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1 Introduction

In this report we briefly detail our preliminary work in reviewing literature and early
experimentation for single view morphing. In Section 2, we review current research
literature in view morphing and matching for single views, and in Section 3 we dis-
cuss a feature based approach to sparse view morphing that also shows promise for
compression of the model data corpus. In Section 4 we describe a new Bayesian ap-
proach (optimal in aMaximum a Posteriorisense) that approaches the problem from a
mid-level segmentation problem. We present results of some preliminary experiments
for feature-based morphing, as well as preliminary demonstration of the novel object
representation.

2 Literature Review

View morphing has been a subject of scientific interest for well over a decade. Here
we review some of the recent advancements in the field. Seitz and Dyer’s [8] static
view morphing algorithm consists of four main steps: determining the fundamental ma-
trix, prewarping, morphing, and postwarping. First, eight or more corresponding points
were manually selected to determine a fundamental matrix,F, by using a linear algo-
rithm. Next, the two original images were warped into a plane parallel to the camera
baseline using epipolar geometry. Following this, a user manually specified a set of
corresponding line segments and then the Beier-Neely method was used to interpolate
correspondences. After linearly interpolating the two parallel views based on the dis-
parity map, a parallel morphing view was obtained. To obtain a realistic final view,
a quadrilateral was used to determine the postwarping path for the final homography
projection using linear interpolation. However, the postwarping path obtained by lin-
ear interpolation may cause shrinking problem as mentioned in [8, 10]. Manning and
Dyer [5] extended static view morphing to dynamic view morphing. However, in their
scenario, the moving objects can only move along a straight line, and their motion is
limited to only translation. Xiao et al. [10] relaxed this constraint and allowed an ar-
bitrary motion. They showed that a rigid dynamic scene is equivalent to several static
scenes with different epipolar geometries based on relative motion. They also extended
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their method to articulated object motion, such as walking and arm gestures, and ob-
tained photo-realistic results. Avidan and Shashua [1] proposed their work on tri-view
synthesis by using trifocal tensor. In their framework, an arbitrary novel view can be
generated at any 3D view position based on three small baseline images, where the
disparity can easily be determined by Lucas-Kanade optical-flow method. It will be
almost impossible for Lucas-Kanade method to work for the wide baseline images.
Pollard et al. [6] determined edge correspondences and used interpolation to generate
a new view over trinocular images. However, since they cannot guarantee that the edge
correspondences are correct, their disparity map was computed using the conventional
edge-scanline algorithm, which is not clean. Therefore, their results contain a lot of
artifacts due to some incorrect correspondences. Vedula et al. [9] proposed view inter-
polation over spatio-temporal domain, where 1417 fully calibrated cameras (with small
baseline) were used on the one side of the actor/actress to capture the events. In their
approach, they used voxel coloring, 3D scene flow, and ray-casting algorithm to synthe-
size the novel view over these original image sequences. They removed the background
layer, and only rendered the actor/actress layers. Their results contain some visible ar-
tifacts due to the errors in shape estimation, scene flow, etc. Pollefeys and Van Gool [7]
combined 3D reconstruction and IBR to render a new view from a sequence of images.
They first determined the relative motion between consecutive images, and then recov-
ered the structure of the scene. Next, employing unstructured light field rendering, they
can generate a virtual view by using view-dependent texture. Using this sequence of im-
ages (small baseline), they accurately estimated dense surface of the scene, which can
efficiently improve the visual effect of their results. Recently, Zhang et al. [11] proposed
to use feature-based morphing with light fields to obtain very realistic 3D morphing. In
their approach, a large number of images (hundreds of pictures) were taken for each
object using an array of calibrated cameras. Then, several feature polygons were manu-
ally determined employing a user interface. Using the corresponding feature polygons,
they generated a 4D light field and grouped the corresponding ray bundles for reference
images. Finally, a novel view was synthesized using blending and warping functions on
reference images.

3 Sparse (Feature-Based) View Morphing

In order to reason about the continuity of pose change in video, it is important to esti-
mate either the exact pose of some representation of it. In our proposal we described a
2D approach that does not require the extraction of explicit 3D pose, instead uses view
morphing to extract a image-based representation of the pose. We achieved success in
reconstructing intermediatary views as shown in Figure 2. However, it was evident that
manual work is inevitably required for visually plausible view morphing, which in it-
self is an antithetical to Automatic Target Recognition. Thus, instead of using dense
morphing, we propose the use feature based matching instead, firstly since detecting
and matching salient features is robust and reliable, and secondly, since it satisfies our
requirements of calculating likely poses, which can be leveraged for subsequent multi-
view (video) matching. To that end, we use SIFT features [4] for detection and match-
ing. Since the data set observes the object from all points of views, we constrain of
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Left Image

Right Image

Synthesized Views

Fig. 1. IR Images and interpolated views.

the movement of any interest point to lie on an ellipse defined by the positions of that
interest point in the set of images. Figure 4 shows an interest point (marked by ’o’) as
it moves along an elliptical curve. In this way we can build a view independent model
of the object defined only by the ellipses constraining the positions of certain interest
points on the object (or target). Figure 5 shows paths created by the movement of 5
different points on the object as view changes. According to the model, the positions of
the interest points plugged into the equation of the defining ellipse should equal zero.
The residue can be considered a measure of error. Figure 6 shows residues for one true
target and one false set of points. We are looking into estimating such ellipse-based
representations for IR images such as Figure 1 as well.

4 Target Recognition

In this section, we describe the object segmentation approach. Rather than necessarily
treat images as a collection of pixels arranged on a regular lattice, we assume a more
general abstraction of an image as a set of segments on a non-regular lattice. We will de-
scribe the overall Bayesian object segmentation framework first, followed by a detailing
of training and testing steps.

4.1 Bayesian Framework

By Bayes Theorem,

p(L|x1,x2, ...xn) =
p(x1,x2, ...xn|L)p(L)

p(x1,x2, ...xn)
(1)

Assuming second-order dependency between adjacent segment, the likelihood term
can be re-written as,

p(x1,x2, ...xn|L) =
∏

i

∏

j

p(xi,xj |L) =
∏

i

∏

j

p(xi|xj ,L)p(xj |L) (2)
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Reference Images

Synthesized ImagesSynthesized Images

Original ImagesOriginal Images

Fig. 2. View morphing from the COIL Data Set.

If a smoothness prior is used, it can be enforced in the decision through a pairwise
interaction MRF prior. In particular, the Ising Model is attractive for its discontinuity
preserving properties,

p(L) ∝ exp
( p∑

i=1

p∑

j=1

λ
(
`i`j + (1− `i)(1− `j)

))
, (3)

whereλ is a positive constant andi 6= j are neighbors as defined in the region-adjacency
graph. Ignoring constant terms, that do not affect the optimization, the posterior term is
then,

p(L|x1,x2, ...xn) ∝
∏

i

∏

j

p(xi|xj ,L)p(xj |L) exp
( p∑

i=1

p∑

j=1

λ
(
`i`j+(1−`i)(1−`j)

))

(4)
Taking the log of both sides and collecting terms,

log p(L|x1, ...xn) ∝
∑

i

∑

j

(
log p(xi|xj ,L)+λ

(
`i`j+(1−`i)(1−`j)

))
+

∑

j

log p(xj |L).

(5)
The MAP estimate is the binary image that maximizesL and since there are2NM pos-
sible configurations ofL an exhaustive search is usually infeasible. In fact, it is known
that minimizing discontinuity-preserving energy functions in general is NP-Hard. Al-
though, various strategies have been proposed to minimize such functions, e.g. Iterated
Condition Modes or Simulated Annealing, the solutions are usually computationally
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(a) (b)

Fig. 3. Several ATR results using view morphing database in COIL. The red lines correspond to
two queried images from the same object which can be correcly identified and the viewing angles
are also estimated. The blue dot lines correspond to two images from the different objects 2 and
3 whose SADs do not coverge to a small value.

expensive to obtain and of poor quality. Fortunately, sinceL belongs to theF2 class of
energy functions, a sum of function of up to two binary variables at a time,

E(x1, . . . xn) =
∑

i

Ei(xi) +
∑

i,j

E(i,j)(xi, xj), (6)

and since it satisfies the regularity condition of the so-calledF2 theorem, efficient al-
gorithms exist for the optimization ofL by finding the minimum cut of a capacitated
graph. To maximize the energy function, we construct a graphG = 〈V, E〉 with a 4-
neighborhood systemN . In the graph, there are two distinct terminalss and t, the
sink and the source, andn nodes corresponding to each image pixel location, thus
V = {v1, v2, · · · , vn, s, t}. A solution is a two-setpartition, U = {s} ∪ {i|`i = 1}
andW = {t} ∪ {i|`i = 0}. The graph construction is with a directed edge(s, i) from
s to nodei with a weightw(s,i) = τi (the log-likelihood ratio), ifτi > 0, otherwise a
directed edge(i, t) is added between nodei and the sinkt with a weightw(i,t) = −τi.
Undirected edges of weightw(i,j) = λ are added if the corresponding pixels are neigh-
bors as defined inN (in our case ifj is within the 4-neighborhood clique ofi) . The
capacity of the graph isC(L) =

∑
i

∑
j w(i,j), and a cut defined as the set of edges

with a vertex inU and a vertex inW. The minimum cut corresponds to the maximum
flow, thus maximizingL(L|x̂) is equivalent to finding the minimum cut. The minimum
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Fig. 4. Corresponding points lie on a conic (assuming an orthographic camera).

cut of the graph can be computed through a variety of approaches, the Ford-Fulkerson
algorithm or a faster version proposed by Greig et al. The configuration found thus
corresponds to an optimal estimate ofL.

4.2 Data Model

The training data for each object is first segmented using mean-shift segmentation [3],
which is a non-parametric clustering approach which abstracts each segment as pixels
with a common mode in a feature space ([l u v x y] is popular choice). From these
segments, a region adjacency graph is produced from the segments which is then used
first for training and then subsequently for recognition. To evaluatep(xi|L), kernel
density estimation on the[l u v] is employed, where each positive segment’s mode
providing a data point in the feature space. To evaluatep(xi|xj ,L), we create a joint
feature space[l(i) u(i) v(i) l(j) u(j) v(j)] which we populate with every pair of adjacent
regions in the training region adjacency graphs.
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Fig. 5. Paths created by the movement of 5 different points on the object as view changes.

Fig. 6. Residues for one true target and one false set of points.
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1 Introduction

In this report, we present our works in automatic target recognition using video, which is one of the major
tasks of the proposal. In Section 2, we first introduce a novel approach for adaptive video registration. In
this approach, the robust layers from a mission video sequence are automatically extracted and a layer mo-
saic is generated for each layer, where the relative transformation parameters between consecutive frames
are estimated. Then, we formulate the image-registration problem as a region-partitioning problem, where
the overlapping regions between two images are partitioned into supporting and nonsupporting (or outlier)
regions. To determine the corresponding motion parameters, we estimate a set of sparse, robust correspon-
dences between the first frame and reference image. Starting from corresponding seed patches, the aligned
areas are expanded to the complete overlapping areas for each layer using a graph-cut algorithm with level
set. Next, we estimate the transformation parameters from the mosaic and align the remaining frames in the
video to the reference image. Finally, using the same partitioning framework, the registration is further refined
by adjusting the aligned areas and removing outliers.

In Section 3, we describe a approach for video-based object recognition which doesn’t require any knowl-
edge of camera position or physical location of images with respect to each other. This approach involves a
sparse 2D model and object matching on the basis of video. The model is generated based on geometry and
image measurements only. We first identify the underlying topological structure of an image dataset and rep-
resent it as a neighborhood graph. The graph is then refined by identifying redundant images and removing
them using view morphing. This gives a smaller dataset leading to reduced space requirements and faster
matching. Finally we exploit motion continuity in video and extend our algorithm to perform matching based
on video input and demonstrate that the results obtained using a video sequence are much robust than using
a single image. Preliminary experimental results for both approaches are presented and discussed.

2 Video Registration

Image registration and alignment have been studied for a long time in different areas, including photogram-
metry, remote sensing, image processing, computer graphics, medical imaging, and computer vision [1–3].
Registration techniques can be classified based on the following two factors: the motion model between
mission and reference images, and the method of alignment [2].

The motion model depends on the geometry of the imaged scene and dynamics of the sensor and object
motion. Given two images of a planar scene, a single motion model (affine or projective) can be fitted using
the existing registration approaches (Fig. 1(a)). For a scene containing multiple planes (or layers), it is difficult
to obtain correct registration using only two images (mission and reference) due to the inconsistent motion
model. Hence, the registration may overfit one layer or the layer boundaries may not be accurate [4]. How-
ever, given a video sequence, an accurate layer segmentation can be obtained by exploiting spatiotemporal
information [5–8] (Fig. 1(b)), which makes it possible to perform the layer-based registration.

Alignment methods can be broadly categorized into three classes: intensity-based (or appearance) meth-
ods, feature based methods, and hybrid methods. The intensity-based methods are based on the well-known
optical flow constraint equation [9], which can be solved by minimizing the sum of squares of pixelwise
differences (SSD). Generally, these methods are more useful for frame-to-frame registration of video frames

1



Fig. 1. Depending on the scene, a video sequence can be represented by one layer (a) or multiple layers (b). (a) This
scene can be approximated by one plane due to the nonparallax camera motion and the generated mosaic. (b) “Flower
garden” sequence, which can be represented by three layers: tree, garden, and background.

with a simple camera motion, where the pixel motion is small and the image intensities are similar [10, 11].
In the feature-based methods, the main steps include: finding robust features, establishing correspondences,
fitting some transformation, and applying the transformation to warp the images [12,13]. These methods are
relatively fast and more suitable for the registration of two dissimilar images with a large and complicated
motion or transformation. Recently, several hybrid methods have been proposed to integrate the merits of
intensity-based and feature-based methods [14, 15]. In these methods, a set of features is extracted, then an
iterative optimization procedure is applied to the supporting regions around these features to minimize some
dissimilar measurements.

Currently, some registration problems, such as video mosaicing and registration of video acquired by an
airborne sensor to a reference image in the presence of camera information [14, 16, 17], have been solved
quite well. However, some problems in this area remain unresolved. First, how do we obtain a reliable initial
estimation of motion parameters if the camera information (e.g. location, viewing angles, and sensor model)
is not available? Particularly, if camera location and orientation are quite different, such as wide baseline
images, the initial estimation usually is quite difficult. Second, how do we deal with outlier regions when
the images are taken at different times? These regions may look different due to appearing and disappearing
objects, such as moving objects, shadows, and vegetation. Therefore, only a part of the image may be useful
for the registration. Third, How do we handle complex motion models in a single 3D scene, such as multiple
homographes shown in Fig. 1(b)? Most existing approaches ignore these problems and attempt to align the
whole image using a single motion model regardless of the number of layers.

With the aim of addressing the above limitations of the current methods, we propose a novel framework
to perform video registration of a 3D scene, which can be approximated by multiple planes, without any
knowledge of the metadata. In particular, given an image sequence of a mission or inspection video, we want
to register it to a reference image, which may be taken at a different time, location and orientation. The
proposed approach first uses a motion layer extraction algorithm [8] to obtain an accurate layer segmentation
of the mission video by exploiting spatiotemporal information. For each layer, a mosaic is generated and
the relative transformation parameters between consecutive frames are estimated. Then, we formulate the
image registration problem into a partitioning framework, where the overlapping regions between two images
are partitioned into supporting and non-supporting regions for the registration. In this framework, a region
expansion process is designed to adaptively propagate the alignment process from the high confidence seed
regions to the low confidence areas and simultaneously remove outlier regions. In order to obtain such starting
seed regions, we apply a wide baseline algorithm [18] to compute a set of reliable seed correspondences

2



(a) (b)

Fig. 2. ( a ) Three frames from a mission video are shown on the left that are to be registered to a single layer in the
reference image shown on the right. ( b ) Three frames from a mission video are shown on the left that are to be registered
to two layers in the reference image shown on the right.

between the first mission frame and reference image. Then, starting from the seed regions, the initially aligned
areas are expanded to the whole overlapping areas using a graph cut algorithm integrated with the level set
representation of the previous regions. Consequently, we achieve a robust layer alignment for each layer using
the relative motion parameters estimated by the layer mosaic, and the final multi-layer video registration is
obtained after back projection of layers.

2.1 Single Layer Registration

In a planar scene, only one layer is available, as shown in Fig. 2(a). It is easy to generate a mosaic for this layer
using an affine or projective motion model. However, if the scene contains multiple layers, the motion models
can vary from a simple global motion model to multiple motion models, where pixel motions are mapped
to several parameter clusters. Figure 2(b) shows one example of this case from a “door-wall” sequence,
which contains two layers. It is impossible to obtain one mosaic using this mission video without severe
misalignment or distortion. Fortunately, in the context of video registration, temporal information is available
in the mission video sequence, from which the motion layers of the scene can effectively be extracted. In
this paper, we use a multiframe graph-cut framework [8] to achieve an accurate layer segmentation of the
mission video sequence. After the motion segmentation, we obtain precise supporting regions for each layer
and the corresponding motion parameters between each consecutive frame, which can be used as the initial
parameters for layer mosaicing.

Since the gap between consecutive frames of a video sequence is small, it is better to use an intensity-
based registration method to minimize the image residue (or SSD), which can be written as

ǫ =
∑

Ω

[I2(H · x) − I1(x)]2, (1)

whereI1 andI2 are two original images,Ω is the overlapping area between two consecutive frames,x ∈ ℜ2

are the homogenous coordinates andH ∈ ℜ3×3 is a homography matrix between two frames. Starting
with H = I (identity matrix), a nonlinear approach, such as LevenbergCMarquardt method, can be used
to iteratively minimize the residue [11]. In this method, after computing image gradient▽I from the two
images, a gradient-descent direction is estimated that leads to a local minimum.

The transformationHi between mission framei with the mosaic becomes known after a mosaic is gen-
erated for each layer. Therefore, we have two choices when it comes to aligning the mission video to the
reference image as shown in Fig. 3. In the first scheme, after aligning the layer mosaic to the reference image
with transformationF , an initial transformation for a mission frame i to the reference image can be computed
by Ti = FHi. However, in this scheme, the error between framefi with framef1 will be accumulated with
i increasing, which may not provide a good estimation between the layer mosaic and the reference image.

In our work, we use an alternative solution, whereby each framefi is directly registered to the reference
image based on the previous transformation of framefi−1. First, we align the first frame to the reference
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Fig. 3. The transformation among mission frames, reference image, and layer mosaic for one georegistration sequence.
Hi is the transformation between mission framei with mosaic.F is the transformation between mosaic and reference
image.Ti is the final transformation between mission framei and reference image.

image and estimate its corresponding transformationT1 by determining corresponding seed regions and using
the region expansion approach. Then the initial transformation for the second frame can be simply computed
by T2 = T1H

−1
1 H2, which can be further refined only using the region expansion process without computing

seed correspondences. After estimating the precise transformationTi−1 of fi−1, we iteratively compute the
initial transformation for frame i byTi = Ti−1H

−1
i−1Hi using the previous framefi−1. As a result, we can

avoid the accumulated error of the mosaic since the initial transformation is always computed employing the
previous framefi−1 instead of the first framef1. Hence, before registering the whole mission video sequence,
we have to align framef1 to the reference image and computeT1.

2.2 Layer Registration

The first issue that has to be tackled for layer registration algorithm development is the decision to use either
sparse or dense image features for registration. Given two wide-baseline images without any metadata, it is
difficult to perform alignment due to illumination variations and large motion between two images. Therefore,
the use of sparse image features is ideal for the fast estimation of initial motion parameters. However, due to
outliers and inaccuracy of these correspondences, the initial registration is usually not good enough. In this
section, we propose a two-stage approach to integrating the merits of the sparse and dense image features. In
the first stage, we determine a set of sparse correspondences between the mission and reference images. Then,
starting from the initial seed correspondences, the aligned regions are gradually expanded to cover the whole
overlapping areas between both images. At the same time, the outlier regions, such as appearing/disappearing
objects that may harm the registration process, are detected and removed.

There are several methods for computing robust correspondences for wide-baseline images [19,20]. Here
we make use of our previous algorithm [20] to determine a set of reliable corresponding corners. In this
approach, a set of edge-corners is identified in both images that provide robust and consistent matching
primitives. Figure 4 shows the detailed matching process for a small patch. After computing the best affine
transformation and illumination coefficients between the two patches in mission and reference images, the
patch inI2 (Fig. 4(d)) is warped as shown in Fig. 4(e), which has a similar appearance to the patch inI1

(Fig. 4(c)), and the residue is minimized.
Once the seed correspondences are estimated between the mission and reference images, our purpose is

to perform registration for each plane (layer) in the scene. For each pair of correspondences, we consider
a small patch centered around each seed region, which can be approximated as a planar patch (or an initial
layer) in the scene. Therefore, we get a number of initial layers, and each layer is supported by a small square
region with its corresponding affine transformation. This implies that the corresponding small square regions
in the mission and reference images are aligned by this initial affine transformation.
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Fig. 4. Determining correspondences between the mission frame and reference image. (a) Mission image. (b) Small
part of reference image. Several correspondences are computed by the wide-baseline matching algorithm, each pair of
correspondences is marked by squares with the same color. (c)-(c) Matching process of green (top row) and blue (bottom
row) corners. (c) A patch from (a). (d) Corresponding patch from (b). (e) Warped patch (d) obtained after applying the
best affine transformation, where patch (e) is similar to patch (c). NB: Compared to the original patches (c) and (d), the
illumination effect is partially compensated between (c) and (e) by estimatingµ andδ.

Nevertheless, this minimization process may create two problems. First, the estimated parameters ob-
tained by using the small patch may overfit the pixels inside the region and may not correctly represent the
global transformation of a larger region. Second, this process ignores the appearing/disappearing objects be-
tween two images, such as the moving objects, occlusion areas, and shadows. To overcome the problems
described above, we expand the region boundary to obtain more supporting pixels that are consistent with the
motion parameters and also to identify the outlier pixels. Then we iteratively refine the motion parameters
using these supporting pixels. Therefore, this registration problem is essentially converted into a partitioning
problem that can be stated as follows: Determine the optimal supporting regions and their corresponding
motion parameters for image registration.

Our registration problem can be recast into the graph-cut framework. In this framework [1], we seek
the labeling functionf that partitions the pixels in regionΩ into two groups: the first group represents the
supporting regions, labeledf = 0; the other represents the outlier regions, labeledf = 1. This partitioning
can be achieved by minimizing the following energy function:

E =
∑

(p, q)∈N

V (p, q) +
∑

p∈Ω

Dp(fp) (2)

where the first term is a piecewise smoothness term, the second term is a data penalty term,N is a4-neighbor
system, andfp is the label of a pixelp. Dp(fp) can be approximated by a Heaviside function.

To minimize the energy function, a weighted graphG = 〈V, E〉 is constructed, where V is a node set
(image pixels) and E is a link set that connects the nodes. After assigning weights for the links, we can
compute a minimum cutC using a standard graph-cut algorithm and partition the original region into the
supporting and outlier regions. However, using this process we cannot expand the region from the initial seed
patch to the exterior to obtain more supporting pixels. Hence, we must use the contour of the previous seed
region prior to computing the level set representation for this region [21,22], which allows the region contour
to evolve along the normal direction. After enforcing the level set regulation on the sink-side weight of graph
G, we can effectively control the graph-cut algorithm to gradually expand the seed region.

Figure 5 shows a detailed expansion process starting from one initial seed region. Figures 5(a) and (b)
show the initial contours of the corresponding seed regions. Based on the initial contour of the original seed
regionΩ0 (Fig. 5(b)), we construct a maskβ of this region, which has a value in[0, 1], where the interior
pixels of the region are marked by 1 and the others are marked by0. Then, a level setφ (Fig. 5(e)) can be
simply computed by convolving the region mask with a Gaussian kernel as:φ = G ∗ β, where the value
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Fig. 5. Region expansion process. (a), (b) Initial corresponding patch contours in the reference and mission images,
respectively. (c) Final registration result, where the intensities of the embedded mission image are adjusted by illumination
coefficientsµ andδ. (d) Simple expansion and partitioning started from the initial contour shown in (a). (e) Level set
representation of initial contour (a). (f)-(h) Intermediate results using graph-cut method with the level set representation,
which can guarantee that the expansion gradually evolves from the center to a boundary. NB: The green boxes in (a) and
(b) are the initial seed regions. (f)-(h) Difference images between the warped (b) and (a) and the green contours in (f)-(h)
are supporting region boundaries obtained after using a bipartitioning algorithm. The nonsupporting pixels are masked
by red.

of φ falls down along the contour normal direction untilφp = 0. Then, we warp the second image using
the corresponding homography and construct a graphG for the pixel withφp > 0. After that, we apply
the level setφ to change the weight of the sink-sidet-link for each pixel, such that the weights of the pixels
inside the region are almost unchanged while the weight(p, t) will decrease when the pixel p is away
from the boundary. As a result, the minimum cutC is most likely to exclude the outside pixels and label
them as the non-supporting pixels for this region. This way, the new expanded supporting regionΩ1 can
be computed as shown in Fig. 5(f). After several iterations as shown in (Figs. 5f-h), the region’s boundary
gradually propagates from the center to the exterior until it reaches the overlapping boundary of two images,
and the alignment is stable. Figure 5(h) shows the final regionΩ5 after five iterations, and Fig. 5(c) shows the
final registration results using the projective transformation computed by this approach. If several initial seed
regions share the same motion transformation for some layer, we expand the multiple regions simultaneously
to speed up the registration process. Figure 5 shows that our approach can obtain the piecewise smooth region
expansion, which is insensitive to noise. The outlier regions due to shadows are also detected and removed. At
the same time, the transformationT1 for the key frame is estimated. After applying the initial transformation
Ti = Ti−1H

−1
i−1Hi to framefi, we initialize the alignment of frame i to the reference image. Then, employing

the region expansion approach to theith frame, we remove outliers and refine the alignment to compute the
transformationTi for this frame. The final video registration results are shown in Fig. 6.

2.3 Experiments

We performed several experiments on different real data sets, where the metadata information was not avail-
able. In all of the experiments, we applied the wide-baseline matching algorithm to estimate sparse corre-
spondences, which can provide an approximated initial alignment between mission and reference images.
For a single layer registration, after determining the sparse correspondences, we expanded these seed regions
simultaneously to speed up the alignment process. The initial homography between two images could be
computed in two ways: select the most robust affine transformation of the seed regions using the RANSAC
technique or estimate a homography voted on by all of these correspondences.

In Fig. 7, we show an example of the multi-seed expansion process. Since a number of correspondences
are determined, it is easy to estimate a robust initial homography using all the correspondences. Then, starting
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Fig. 6. Video registration results. (a) Mission video frames. (b) Registration results for several frames, where the mission
images are superimposed on the reference image. (c) Full registration of all mission video frames.

Fig. 7. Registration using multiseed region expansion. (a) Mission image. (b) Small part of a reference image. The cor-
respondences are marked in a and b by the same colors. (c) Initial seed regions and (d) corresponding level set represen-
tation. (e) Final region contour after expansion, where the nonsupporting regions are indicated by red. (f) Registration
results. (g) Checkered display after alignment. (h), (i) Zoomed alignment results before and after applying the region
expansion alignment.

with the initial homography, we expand all the initial seed regions simultaneously until the overlapping areas
between the mission and reference images are covered. Our graph-cut algorithm also detects and removes the
outlier regions, most of which are due to vegetation or shadows. Figures 7(h) and (i) compare the zoomed
results before and after applying the region expansion process.

Figure 8 shows another set of results for geo-registration using single seed region expansion where only
three correspondences are determined due to the small size of the mission frame. Since we cannot obtain a
good initial projective transformations from these few correspondences, we use RANSAC to determine the
robust affine transformation of the seed regions, which is shown in blue in Figs. 8(a) and (b). Then, starting
from one seed region (blue), we perform the adaptive region expansion alignment and obtain the registration
results as shown in Figs. 8(c) and (d).

Figure 9 shows the final registration results for the doorwall sequence. After obtaining the layers for each
frame, we align the different layers to the reference image separately using the adaptive region expansion ap-
proach. The final registration results of the first frame are shown in Figs. 9(d) and (e). Compared to the direct
registration, our approach has two advantages. First, to align the corresponding layers, we employ different
sets of motion parameters to correctly represent the mapping of the pixels in these layers. Second, the layer
segmentation also provides accurate supporting regions for each layer, which prevent the region expansion
process across the layer boundaries. Therefore, for each layer registration, our approach can effectively avoid
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Fig. 8. Registration using one seed region expansion. (a) Small part of a reference image. (b) Mission image. (c) Regis-
tration results. (d) Checkered display after alignment.

Fig. 9. Multiple-layer registration. (a) Reference image. (b), (c) Layers of door and wall in frame 1. (d) Registration
results of frame 1. (e) Checkered display after alignment. Middle: Some mission video frames. Bottom: Corresponding
video registration for these frames, where the mission images are split into two parts during the registration.

the pixels from the other layers and achieve more accurate aligned regions for each layer. In all of our exper-
iments, after determining correspondences, the computational time for a single layer registration is less than
10s per frame.

3 Model Generation for Video-based Object Recognition

In this section, we present a strategy for object recognition. This needs techniques to extract information
on the basis of the contents of the images without human intervention and identify the objects present in
them. What makes this task difficult is the difference of interpretation of images by humans and software
systems. Most current systems operate on the low-level features like color or texture, directly extracted from
the pixel, while humans go for the semantic meaning or the high-level features present in the image, like the
objects or scene it contains [23]. Hence, one of the major tasks in image analysis is to identify the different
objects present in the scene. Another major difficulty arises due to the fact that the operating conditions
may differ significantly from those of training and are not anticipated [24]. The major issues and needs of
object recognition include good representation of object models and backgrounds, adaptation to facet or
environment changes, good features for object representation and efficient use of a priori knowledge about
object signatures [25].

There are a variety of approaches explored for object recognition, like, CAD-based, appearance-based and
shape-based methods; however, each approach has its own set of limitations [26]. In each of the techniques,
a model is generated which is then compared with an image to identify the object being tested. However,
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(a) (b)

Fig. 10. (a) Tessellating the viewing space. (b)Matching of Feature points.

object recognition from a single view may fail when there is much similarity among test objects or when the
background clutter or partial occlusion masks features of the object. Selingeret. al [27] used multiple fixed
cameras of known pose to apply single view object recognition system over a sequence of imagery. However,
they did not find any significant advantage of this approach. Later on, Zhouet. al [28] successfully utilized
the temporal information present in video sequences for face recognition. They formulated a probabilistic
model merging the dynamics and identity of humans obtained from video. However, they assumed certain
constraints in the motion of persons while gathering their test data. Javedet. al [29] presented a probabilistic
framework for general object recognition using a video sequence containing different views of an object.
They generated a model for each object in the training set capturing images at known viewing angles of
camera and poses of objects.

In our approach, we use a set of reference images to generate an online sparse 2D model, estimate the
underlying topological structure and, arrange them in the form of a connectivity graph. We refine the graph
using morphing, so as to remove the redundant images and finally use video matching for recognition of
objects. The strength of our approach is that we don’t need to know the object pose beforehand; and the video
sequence could be shot over any arbitrary trajectory with objects following an unconstrained (but smooth)
path. The use of video rather than a single image increases the confidence measure of the match.

3.1 Model Generation For Objects

Any object can be modeled using either an object-centered or a view-centered representation [30, 31]. The
object-centered representations use the features from the objects, like boundary curves, surfaces etc, to de-
scribe the volumes of space. View-centered representations, on the other hand depend, on the outlook of
objects from different viewpoints. These involve the use of aspect graphs and silhouettes for modeling. We
have used the view-centered representation for generation of database, which makes the task of matching
simpler. This is because the need for projection of model to 3D is no longer there and the features that are
to be compared are in 2D [31]. The input to our database generation algorithm is a set of reference images,
which have been arbitrarily extracted from a video sequence shot around an object. Our system tessellates the
images around the viewing space of the object, as shown in Fig. 10(a). The algorithm generates a neighbor-
hood graph, where each image is identified as a node and the links between neighbors are specified as edges.
The images are defined as neighbors on the basis of their logical proximity and extent to which they match
with each other.

Development of Neighborhood Graph Given a set of reference images, we propose a novel approach to
tessellate them around the viewing space of the object while ensuring a minimal size of the database. The
algorithm begins by identifying the feature points in all the images of the repository. We have used the Scale-
Invariant Feature Transform (SIFT) Operator to extract the distinctive features in the image. The features
are invariant to image scale and rotation; and robust to changes in viewpoints and illumination. Feature
coorespondences are then identified using a fast nearest-neighbor algorithm [32], which are ultimately used
to decide the presence or absence of linkage between nodes. Figure 10(b) shows SIFT points and matches
identified for a pair of images.
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Fig. 11. Neighborhood Graph for a car.

For an image database having originallyN images, anN × N link matrix is formed. A link between
image pair(Ii, Ij) is marked if they are found to be neighbor. The procedure for identification of neighbors
is two-fold. In the first pass, we find the average Euclidean distanced for each image pair(Ii, Ij). For c

corresponding points between two images, we have:

d(Ii, Ij) =

c
∑

k=1

√

(Ix
ik − Ix

jk)2 + (Iy
ik − I

y
jk)2

c
(3)

For each image, the pair with the minimum distance is selected as the neighbor, and an edge is marked
between them. Considering this attribute as our seed point, we expand the region to include all those images
in the neighborhood block, whose Euclidean distance falls within25% of the minimum value. This accounts
for the out of plane images and handles arbitrary viewpoints.

In the second pass, we apply the physical proximity constraint between successive video frames. This im-
plies that two consecutive frames of a video sequence represent two images in proximity and hence represent
neighbors. Therefore:

Neighbor(Ii, Ii+1) = 1, ∀ i ∈ Set of Frames (4)

It may be noted that this second criterion improves the connectivity of the graph. In cases, where the
image set is not from a true video sequence, and represents an arbitrary collection of images, only the first
criterion would suffice. Figure 11 shows a portion of a graph that is generated for a car. Such a graph is
generated for each object and stored as a model.

Multi-view Morphing Once the Neighborhood graph is generated, it is refined using view morphing. Seitz
et. al [33] introduced view morphing to generate novel views from varying viewpoints using only two im-
ages. Their approach is based on the principles of projective geometry, which can explicitly preserve 3D
information. Given sparse correspondences between the image pair, view morphing works by rectifying the
two images in such a manner that the corresponding points lie in the same scanline (a step known as pre-
warping). This allows calculation of disparity map which helps in retrieving dense correspondences. Once
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Fig. 12. Updated Neighborhood Graph after Morphing.

the dense correspondences are known, the morph is generated using cross dissolve, and the resulting image
is re-projected to its final position. Seitz’s work could however be used to generate new views only along the
line connecting the two original images. Later on Wexleret. al [34] extended the concept to tri-view morph-
ing and were able to synthesize morphs at any viewpoint within the boundaries of the triangle formed by the
three images.

Graph Pruning A view-centered approach leads to a space requirement that is larger than that of object-
centered representation [31]. This is because many characteristic features are to be noted and there might
be an overlap among the images. This requires special attention to be paid to keep the size of database at
minimum. We proceed by analyzing for each image if it represents a morph of its neighbors or not. To test
any imageIi we begin with extracting its two adjacent imagesIj andIk and apply morphing on them to
generate features and verify if they represent the features originally extracted fromIi or not.

Given an Image pair(Ij , Ik), with corresponding feature pointsp andq, we align the image pairs to have
the corresponding points along corresponding scan lines and synthesize the features using Equation(3) for
varying values ofα:

ps = pα + (1 − α)q (5)

The features generated in this manner are compared with the original features extracted fromIi. For this,
we have to iteratively engender and compareps for varying values ofα. If there exists anα for which ps
represents the features of Ii, it meansIi could be generated usingIj andIk and hence could be removed from
the dataset. This procedure is demonstrated in Fig. 11 and updated graph is shown in Fig. 12. This proceeds
till all the images in the database are exhausted.

The same procedure is then repeated for images having larger number of neighbors. The strength of this
technique is that we do not have to generate the intermediate images completely. Rather, we simply work on
the selected features of the images. This saves us from computing the disparity map which takes time.

3.2 Video-Based Object Recognition

One way to identify the target image is to generate a massive dataset of virtual views using morphing and
compare the test image with all of them. This is inefficient and computationally expensive. We propose to
initially match the test image with only those images stored in the database. This helps in identifying an
approximate neighborhood of the image being examined. Once a seed image is found, the virtual images
around it could be generated using the morphing approach and compared with the test image. Since we
do not have to generate the whole image; rather, we work with the sparse features detected by the feature
detector, the speed of our system is increased due to elimination of the disparity map generation step.

In order to further strengthen the confidence measure of our detection results, we have used video se-
quences instead of single image for target recognition. The major advantage of this technique is that the
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Fig. 13. Using Video Sequence for Matching.

Fig. 14. Linear Graph Generated for an Object of COIL dataset.

video provides information of multiple views. Many objects in real world look alike, if observed from a
particular viewpoint and completely different when observed from some other point of reference. Using a
video for object recognition, we can exploit the fact that the two adjacent images in the video sequence
represent proximally closer views of the object. Hence, the adjacent frames of the video sequence should
point to the same (or adjacent) nodes of the neighborhood graph. Thus, a correct identification results in a
smooth transition across the multiple images, following an unbroken trajectory in the model. On the other
hand, an incorrect match results in jitters across the multiple frames, which helps in identifying the incorrect
matches. Our approach for developing the topological structure of the images in database provides ease of
traversing while using video sequence. As shown in Fig. 13, given the stored networks of objects and a test
video sequence, only the correct object follows a smooth trajectory along the graph and others suffer from
discontinuities.

3.3 Experiments

To evaluate our approach for target recognition, we used the Columbia Object Image Library (COIL100) data
set from the Columbia University and VIVID by DARPA. In COIL there are72 images each of100 objects.
The viewing angle between these images is uniform, and this leads to a fairly linear neighborhood graph. See

12



(a) (b)

Fig. 15. (a) A portion of original neighborhood graph and (b) its pruned Network.

Fig. 14 for neighborhood graph generated for a pickup. In order to capture the randomness of the real-world
image capture, we shot our own video sequences following arbitrary trajectories.

Figure 15 shows a portion of the neighborhood graph of one of the objects and the updated Network.
Experiments show that our algorithm could generate the neighborhood graph with a precision of97.86%.
The system was able to reduce the image base to about60% of its original size.

Video based matching improved the results obtained from single image matching. Single image matching
gave40% correct matches, while video-based recognition gave about80% correct matches. The reason for
the20% incorrect matches is the high similarity of different objects at certain poses, which further increases
the viability of our approach of using videos instead of single image for matching. The Fig. 16(a) shows a
smooth trajectory for the correct identification of motor bike. Figure 16(b) identifies an incorrect matching of
a Humvee with the green truck by pointing discontinuities.
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1 Summary

In this report, we present a novel method for object class detection which is based on 3D object
modeling. Instead of using a complicated mechanism for relating multiple 2D training views, our
method establishes spatial connections between these views by mapping them directly to the surface
of 3D model. The 3D shape of an object is reconstructed by using a homographic framework from
a set of model views around the object and is represented by a volume consisting of binary slices.
Features are computed in each 2D model view and mapped to the 3D shape model using the same
homographic framework. Also we present our work on object recognition based on correlation using
morphing technique. There has been considerable interest in using correlators for pattern recognition.
Correlators are inherently shift-invariant allowing us to locate patterns (such as moving targets) in
the input scene merely by locating the correlation peak. Thus, we do not need to segment or register
the images prior to correlation, as we have to do in alternate methods for pattern recognition. In
this report, we describe two new methods for synthesizing new views of a known object so that the
occluded features of the object can be inferred and incorporated into the recognition process.

2 Model based Object Class Detection

The key challenge ofObject Detection is the ability to recognize any member in a category of
objects in spite of wide variations in visual appearance due to geometrical transformations, change
in viewpoint, or illumination. To deal with these challenges, we developed a novel 3D feature model
based object class detection method. Our objective is to detect the object given an arbitrary 2D view
using a general 3D feature model of the class. Here the objects can be arbitrarily transformed (with
translation and rotation), and the viewing position and orientation of the camera is arbitrary as well.
In addition, camera parameters are assumed to be unknown.

Object detection in such a setting has been considered a very challenging problem due to various
difficulties of geometrically modeling relevant 3D object shapes and the effects of perspective pro-
jection. In our work, we exploit a recently proposed 3D reconstruction method using homographic
framework for 3D object shape reconstruction. Given a set of 2D images of an object taken from
different viewpoints around the object with unknown camera parameters, which are called model
views, the 3D shape of this specific object can be reconstructed using the homographic framework
proposed in [10]. In our method, 3D shape is represented by a volume consisting of binary slices
with 1 denoting the object and 0 for background. By using this method, we can not only reconstruct
3D shapes for the objects to be detected, but also have access to the homographies between the



2D views and the 3D models, which are then used to build the 3D feature model for object class
detection.

In the feature modeling phase of our method, SIFT features [12] are computed for each of
the 2D model views and mapped to the surface of the 3D model. Since it is difficult to accurately
relate 2D coordinates to a 3D model by projecting the 3D model to a 2D view (with unknown
camera parameters), we propose to use a homography transformation based algorithm. Since the
homographies have been obtained during the 3D shape reconstruction process, the projection of a
3D model can be easily computed by integrating the transformations of slices from the model to a
particular view, as opposed to directly projecting the entire model by estimation of the projection
matrix. To generalize the model for object class detection, images of other objects of the class are
used as supplemental views. Features from these views are mapped to the 3D model in the same
way as for those model views. A codebook is constructed from all of these features and then a 3D
feature model is built. The 3D feature model thus combines the 3D shape information and appearance
features for robust object class detection.

Given a new 2D test image, correspondences between the 3D feature model and this testing view
are identified by matching feature. Based on the 3D locations of the corresponding features, several
hypotheses of viewing planes can be made. For each hypothesis, the feature points are projected to
the viewing plane and aligned with the features in the 2D testing view. A confidence is assigned to
each hypothesis and the one with the highest confidence is then used to produce the object detection
result.

2.1 Research Background and Related Works

As the approaches for recognizing an object class from some particular viewpoint or detecting a
specific object from an arbitrary view are advancing toward maturity [3, 9, 11], solutions to the
problem of object class detection using multiple views are still relatively far behind. Object detection
can be considered even more difficult than classification, since it is expected to provide accurate
location and size of the object.

Researchers in computer vision have studied the problem of multi-view object class detection
resulting successful approaches following two major directions. One path attempts to use increasing
number of local features by applying multiple feature detectors simultaneously [1, 6, 13–15]. It has
been shown that the recognition performance can be benefited by providing more feature support.
However, the spatial connections of the features in each view and/or between different views have
not been pursued in these works. These connections can be crucial in object class detection tasks.
Recently, much attention has been drawn to the second direction related to multiple views for object
class detection [5, 7, 8]. The early methods apply several single view detectors independently and
combine their responses via some arbitration logic. Features are shared among the different single-
view detectors to limit the computational overload. Most recently, Thomaset al. [16] developed a
single integrated multi-view detector that accumulates evidence from different training views. Their
work combines a multi-view specific object recognition system [9], and the Implicit Shape Model
for object class detection [11], where single-view codebooks are strongly connected by the exchange
of information via sophisticated activation links between each other.

Here we introduce a unified method to relate multiple 2D views based on 3D object modeling.
The main advantage of this method is an novel efficient object detection system capable of recog-
nizing and localizing objects from the same class under different viewing conditions. Consequently,
3D locations of the features are considered during detection and better accuracy is obtained.
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2.2 Object Detection using 3D Shape Model

3D Shape Model. Let Ii denote the foreground likelihood map (where each pixel value is the
likelihood of that pixel being a foreground) in theith view of totalM views. Considering a reference
plane,πr, in the scene with homographyHπr ,i from the ith view to πr, warping Ii to πr gives the
warped foreground likelihood map:

Îi,r = [Hπr ,i]Ii. (1)

The visual hull intersection onπr (AND-fusion of the shadow regions) is achieved by multiplying
these warped foreground likelihood maps:

θr =

M
∏

i=1

Îi,r , (2)

whereθr is the grid of the object occupancy likelihoods planeπr. Each value inθr gives the likelihood
of this grid location being inside the body of the object, indeed, representing a slice of the object cut
out by planeπr. It should be noted that due to the multiplication step in (2), the locations outside the
visual hull intersection region will be penalized, thus, having a much lower occupancy likelihood.

The grid of the object occupancy likelihood can be computed at an arbitrary number of planes
in the scene with different heights, each giving a slice of the object. Naturally this does not apply to
planes that do not pass through the object’s body, since visual hull intersection on these planes will
be empty, therefore a separate check is not necessary.

Let vx, vy, andvz denote the vanishing points for theX, Y , andZ directions, respectively, and
l be the normalized vanishing line of reference plane in theXYZ coordinate space. The reference
plane to the image view homography can be represented as

Ĥre f =

[

vx vy l
]

. (3)

Supposing that another planeπ has a translation ofz along the reference directionZ from the refer-
ence plane, it is easy to show that the homography of planeπ to the image view can be computed
by

Ĥπ =
[

vx vy αzvz + l
]

= Ĥre f +
[

I|αzvz
]

, (4)

whereα is a scaling factor. The image to plane homographyHπ is obtained by invertinĝHπ.
Starting with a reference plane in the scene (typically the ground plane), visual hull intersection

is performed on successively parallel planes in the up direction along the body of the object. The
occupancy gridsθi are stacked up to create a three dimensional data structureΘ = [θ1; θ2; . . . θM ].
Θ represents a discrete sampling of a continuous occupancy space encapsulating the object shape.
Object structure is then segmented out fromΘ by dividing the space into the object and background
regions using the geodesic active contour method [2]. By using the above homography based frame-
work, 3D models for different objects can be constructed. In our method, not only the 3D shape of
the target object is exploited, but also the appearance features. We relate the features with the 3D
model to construct afeature model for object class detection.

The features used in our work are computed using the SIFT feature detector [12]. Feature vectors
are computed for all of the training images. In order to efficiently relate the features computed from
different views and different objects, all the detected features are attached to the 3D surface of the
previously built model. By using the 3D feature model, we avoid storing all the 2D training views,
thus there is no need to build complicated connections between the views. The spatial relationship
between the feature points from different views are readily available, which can be easily retrieved
when matched feature points are found.

The features computed in 2D images are attached to the 3D model by using the novel homo-
graphic framework. Instead of directly finding the 3D location of each 2D feature, we map the 3D

3



(a) Volume projection (b) Plane transformation

Fig. 1. Illustration of equivalence of 3D to 2D projection and plane transformation using homogra-
phies. (a) A 2D view of a 3D volumeV is generated by projecting the volume on a image plane. (b)
The same view can be obtained by integrating the transformation of each slice in the volume to the
image plane using homographies.

points from the model’s surface to the 2D views, and find the corresponding features. Our method
does not require the estimation of a projection matrix from 3D model to a 2D image plane, which is
a non-trivial problem. In our work, the problem is successfully solved by transforming the model to
various image planes using homography. Since the homographies between the model and the image
planes have already been obtained during the construction of the 3D model, we are able to map the
3D points to 2D planes using homography transformation.

In our work, a 3D shape is represented by a binary volumeV , which consists ofK slicesS j,
j ∈ [1, K]. As shown in Fig. 1(b), each slice of the object is transformed to a 2D image plane by
using the corresponding homographyĤ in (4). The transformed slice accounts for a small patch of
the object projection. Integrating all theseK patches together, the whole projection of 3D object in
the 2D image plane can be produced. In this way, we obtain the model projection by using a series
of simple homography transformations and the hard problem of estimating the projection matrix of
a 3D model to a 2D view is avoided.

In our method, the 3D shapes are represented using binary volumes with a stack of slices along
the reference direction. Thus, the surface points can be easily obtained by applying edge detection
techniques. After transforming the surface points to 2D planes, feature vectors computed in 2D can
be related to the 3D points according to their locations. That is the way a 3D feature model is built.

The training images in our work come from two sources. One set of images is taken around
a specific object of the target class to reconstruct it in 3D as shown in Fig. 2. These images are
calledmodel views, which provide multiple views of the object but are limited to the specific object.
To generalize the model for recognizing other objects in the same class, another set of training
images is obtained by using Google image search. Images of objects in the same class with different
appearances and postures are selected. These images are denoted as thesupplemental views.

Since the homographies between the supplemental images and the 3D model are unknown,
features computed from the supplemental images cannot be directly attached to the feature model.
Instead, we utilize the model views as bridges to connect the supplemental images to the model
as illustrated in Fig. 2. For each supplemental image, the model view, which has the most similar
viewpoint is specified. The supplemental images are deformed to their specified view by using an
affine transformation alignment. Then we can assume that each supplemental image will have the
same homography as the model’s corresponding view. The 2D features computed from all of the
supplemental training images can now be correctly attached to the 3D model surface using the same
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Fig. 2. Construction of 3D feature model for motorbikes. 3D shape model of motorbike (at center)
is constructed using the model views (images on the inner circle) taken around the object from
different viewpoints. Supplemental images (outer circle) of different motorbikes are obtained by
using Google’s image search. The supplemental images are aligned with the model views for feature
mapping. Feature vectors are computed from all the training images and then attached to the 3D
model surface by using the homography transformation.

method as discussed for the model views. A codebook is constructed by combining all the mapped
features with their 3D locations.

Object Class Detection. Given a new test image, our objective is to detect objects belonging to
the same class in this image by using the learnt 3D feature modelM. Each entry ofM consists of
a code and its 3D locations{c, l3c}. Let F denote the SIFT features computed from the input image,
which is composed by the feature descriptor and its 2D location in the image{ f , l2f }. ObjectOn is
detected by matching the featuresF to the 3D feature modelM.

In our work, feature matching is achieved in three phases. In the first phase, we match the
features by comparing all the input features to the codebook entries in Euclidean space. However,
not all the matched codebook entries in 3D are visible at the same time from a particular viewpoint.
So, in the second phase, matched codes in 3D are projected to viewing planes and hypotheses of
viewpoints are made by selecting viewing planes with the largest number of visible points projected.
In the third phase, for each hypothesis, the projected points are compared to 2D matched feature
points using both feature descriptors and locations. This is done by iteratively estimating the affine
transformation between the feature point sets and removing the outliers with large distance between
corresponding points. Outliers belonging to the background can be rejected during this matching
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Fig. 3. Detection of motorbikes and horses using the proposed approach. The ground truth is shown
in green and red boxes display our detected results.

process. The object location and bounding box is then determined according to the 2D locations of
the final matched feature points. The confidence of detection is given by the degree of match.

Experimental Results. Our method has been tested on two object classes: motorbikes and horses.
For the motorbikes, we took 23 model views around a motorbike and obtained 45 supplemental views
by using Google’s image search. Some training images of the motorbikes and the 3D shape model
are shown in Fig. 2. For the horses, 18 model views were taken and 51 supplemental views were
obtained.

To measure the performance of our 3D feature model based object class detection technique, we
have evaluated the method on the PASCAL VOC Challenge 2006 test dataset [4], which has become
a standard testing dataset for objective evaluation of object classification and detection algorithms.
The dataset is very challenging due to the large variability in the scale and poses, the extensive
clutter, and poor imaging conditions. Some successful detection results are shown in Fig. 3. The
green box indicates the ground truth, while our results are shown in red boxes.

For quantitative evaluation, we adopt the same evaluation criteria used in PASCAL VOC chal-
lenge, so that our results can be directly comparable with [4,8,16]. By using this criteria, a detection
is considered correct, if the area of overlap between the predicted bounding boxBp and ground truth
bounding boxBgt exceeds 50% using the formula

area(Bp ∩ Bgt)

area(Bp ∪ Bgt)
> 0.5. (5)
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Fig. 4. The PR curves for (a) motorbike detection and (b) horse detection using our 3D feature model
based approach. The curves reported in [4] on the same test dataset are also included for comparison.

Theaverage precision (AP) andprecision-recall (PR) curve can then be computed for performance
evaluation.

Fig. 8(a) shows the PR curves of our approach and the methods in [8,16] for motorbike detection.
The curve of our approach shows a substantial improvement over the precision compared to the
method in [8], which is also indicated by the AP value (0.182). Although our performance is lower
than that of [16], considering the smaller training image set used in our experiments, this can be
regarded as satisfactory. Fig. 8(b) shows the performance curves for horse detection. While there
is no result reported in the VOC challenge using researchers’ own training dataset for this task, we
compared our result to those using the provided training dataset. Our approach performs better than
the reported methods and obtained AP value of 0.144. It is noted that the absolute performance level
is lower than that of motorbike detection, which might be caused by the non-rigid body deformation
of horses.

3 Correlation Pattern Recognition Based on View Morphing

In this report, we describe two new methods for synthesizing new views of a known object. We
have shown previously that given a set of paired signatures inY andX, it is possible to model the
view synthesis process as a linear transformA such thatAY = X. In fact, the minimum squared error
solution was shown to be

A = XYT
(

YYT
)−1
. (6)

Then, if y (a column of Y) is an “observed” signature, the matrixA can be used to obtain the
predictionx (a column ofX) via the equationAy = x.

3.1 Interpolated Nearest Neighbor

The problem is that while the overall squared error is minimized, the performance at or near individ-
ual signatures can be poor. To overcome this, we limit the signature pairs to be the nearest-neighbors
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of the input signature. Thus, given an observed input signature (sayz), we select theM nearest neigh-
bor columns ofY (denoted by the matrixZ) and the corresponding columns ofX (now denoted by
the matrixU) and write the equation:

AZ = U. (7)

The problem now is thatM is substantially smaller than the dimension of the vector space, and the
minimum squared error solution forA cannot be computed sinceZZT is singular. One approach to
overcome this limitation is to avoid the explicit computation ofA altogether by assuming that the
observed input signaturey can be approximated as a weighted linear combination (or interpolation)
of its nearest neighbors, i.e.

y = Za. (8)

Of course, giveny andZ it is easy to obtain the weights

a =
(

ZT Z
)−1

Zy. (9)

With this simplification, the estimation equation becomes

Ay = AZa = Ua. (10)

In other words, if the interpolation weight vectora is known, the predicted response toy is
simply the interpolation (weighted linear combination) of the columns ofU. In other words, we
don’t actually need to know the transform matrixA, as long as we have an estimate for the weight
vector a and the ideal predicted signatures inU.

3.2 Constrained Optimization

In this section we combine the advantages of the original LMSE approach, and the nearest neighbor
interpolation technique. Specifically, we requireA to minimize MSE across all the data, but satisfy
exact relations in the neighborhood of the test vector.

Let Y be the input data matrix and X be the desired output data. We wish to find the linear
transformA that will satisfy the equation in a minimum squared error (mse) sense. In terms of the
columns of the input and output data matrices, this can be written as

E =
N
∑

i=1

∣

∣

∣Ayi − xi

∣

∣

∣

2
. (11)

At the same time, we wish to exactly satisfy the linear relation in the immediate neighborhood of
the test inputz. Let the columns ofZ represent theM nearest neighbors ofz, and the corresponding
exact outputs are the columns ofU. There we have the hard constraintsAZ = U. We find A by
solving for one row at a time by formulating a constrained minimization problem. LetaT be a row
of A, and be the corresponding row ofX. The error can be written for each row as

E =
∣

∣

∣aT Y − xT
∣

∣

∣

2

=

∣

∣

∣YT a − x
∣

∣

∣

2
= aT YT Ya + xT x − 2aT Yx

= aT Da + xT x − 2aT Yx.
(12)

The constraints onaT is similarly written as

ZT a = u (13)

whereu is the corresponding row ofU.
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Using the method of Lagrange multipliers, we form the functional

Φ = aT Da + xT x − 2aT Yx − 2λ1

(

aT z1 − u1

)

− 2λ2

(

aT z2 − u2

)

− · · · − 2λM

(

aT zM − uM

)

. (14)

The derivative of this w.r.t. toa is

∇aΦ = 2Da − 2Yx − 2(λ1z1 + λ2z2 + · · · + λ1z1) = 2Da − 2Yx − 2Zl. (15)

Setting this to zero, we get

Da = Yx + Zl (16)

or

a = D−1 (Yx + Zl) . (17)

We then substitute this in the constraint equation to get

u = ZT D−1 (Yx + Zl) = ZT D−1Yx + ZT D−1Zl. (18)

Therefore,

l =
(

ZT D−1Z
)−1 (

u − ZT D−1Yx
)

. (19)

Finally, the expression for a is obtained as

a = D−1Yx + D−1Z
(

ZT D−1Z
)−1 (

u − ZT D−1Yx
)

. (20)

3.3 Examples and Comparisons

In this section we illustrate and compare the previous LMSE technique, the interpolated nearest
neighbor method, and the new constrained optimization approach. We present several cases below
where a group of four images on the left show the performance of the prediction algorithms, and
the input test image is shown on the right. In each case, the the top left corner is the “ideal” image
to be predicted. The top right is the result of the previous LMSE approach, the bottom left is the
output of the nearest neighbor method, and the bottom right is the prediction obtained using the
constrained technique. For each predicted image, the normalized similarity to the ideal image is
shown in the title (larger is better). For example in case 1 below, the LMSE approach achieves a
similarity of 0.75, and the nearest neighbor approach produces a worse result with similarity of 0.55.
The constrained optimization technique performs the best by producing an image which has 0.79
similarity to the ideal image. The same is found to be true for the other 3 cases as well where the
constrained optimization technique performs the best.
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